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Abstract. The Green’s function formalism in Condensed Matter Physics is reviewed within the equation
of motion approach. Composite operators and their Green’s functions naturally appear as building blocks
of generalized perturbative approaches and require fully self-consistent treatments in order to be properly
handled. It is shown how to unambiguously set the representation of the Hilbert space by fixing both the
unknown parameters, which appear in the linearized equations of motion and in the spectral weights of
non-canonical operators, and the zero-frequency components of Green’s functions in a way that algebra
and symmetries are preserved. To illustrate this procedure some examples are given: the complete solution
of the two-site Hubbard model, the evaluation of spin and charge correlators for a narrow-band Bloch
system, the complete solution of the three-site Heisenberg model, and a study of the spin dynamics in the
Double-Exchange model.

PACS. 71.10.-w Theories and models of many-electron systems — 71.27.4-a Strongly correlated electron

systems; heavy fermions — 71.10.Fd Lattice fermion models (Hubbard model, etc.)

1 Introduction

The physical system analyzed in this paper is an aggre-
gate of interacting Wannier-electrons living on a lattice
spanned by the vectors i. For the sake of simplicity, we
restrict our study to single-band electron models; the gen-
eralization to multi-band models is straightforward. The
system is enclosed in a finite, but macroscopically large,
volume V', containing M sites of the lattice, and is sup-
posed to be in thermodynamic equilibrium at a tempera-
ture T'. In a second-quantization scheme the dynamics of
this system is ruled by a certain Hamiltonian H = H [p(i)]
describing, in complete generality, the free propagation of
the electrons and all the interactions among them and
with external fields (e.g., electromagnetic fields, pressure
and temperature gradients,...). ¢(i) denotes an Heisenberg
electronic field (¢ = (i,t)) in spinorial notation satisfying
canonical anticommutation relations. Any physical prop-
erty of this system can be connected to the expectation
value of a specific operator.

The expectation value (A) of any operator A = A [p(i)]
can be computed, for the grand-canonical ensemble, by
taking the normalized trace of the operator weighted with
the quantum-mechanical statistical factor e ” (f-nN).
N = > i Ph(i)¢o (i) is the total number operator, /3 is the
inverse temperature and p is the chemical potential, which
is fixed in order to get the desired average number of par-
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ticles N = (N). The chemical potential will be a function
of N and T, as well as other parameters present in the
Hamiltonian. Although the trace can be taken over any
basis (i.e., over any complete set of states in the Hilbert
space of the system), the most convenient one, the eigen-
basis, is constituted by the simultaneous eigenstates of H
and N. If such a basis is known, then all the properties
of the system can be exactly calculated: this procedure is
known as exact diagonalization (ED). It is worth remind-
ing that the Hilbert space of a fermionic system contains
only those states compatible with the Pauli principle (i.e.,
states with occupation numbers per site and spin [1] equal
to either 0 or 1).

Generally, ED can be effectively applied only to sys-
tems that are non-interacting or interacting, but very
small. In particular, if the system is non-interacting the
eigenbasis coincides with the canonical basis of the Fock
space of the system (i.e., the set of states constructed by
locating the electrons, one at a time, on the lattice sites in
accordance with the Pauli principle). For small systems,
it is always possible to exactly diagonalize the Hamilto-
nian according to the reasonable small number of available
states, but when large interacting systems are considered
the number of states can be enormous and ED is prac-
tically not applicable. This consideration gave birth to
numerous numerical techniques: Lanczos, quantum Monte
Carlo,..., which can be considered as attempts to construct
an approximate version of ED that could be applied to
very large systems. However, these numerical techniques
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have some very severe limitations coming from the un-
avoidable small number of sites they can treat (the com-
putational time increases exponentially with the number
of available states): they cannot give a reliable description
of systems with long range interactions; phases present-
ing long range order of any kind are absolutely unaccessi-
ble; the very low resolution in frequency and momentum
prevents the applications to systems with relevant low-
energy features (e.g., systems that present Kondo-like ef-
fects) or with strong spatial-dependence or anisotropy in
their physical properties (e.g., systems that have a Fermi
surface ill-defined, nodal or with high angular-momentum
symmetry). Moreover, the information we get by means of
these techniques for a system of a certain size difficultly
can be used for a system of bigger size and, even worse,
does not give any clear idea of what can happen in the
corresponding bulk system.

According to this, we have to find an alternative exact
analytical technique that can generate, for large interact-
ing systems, approximate treatments not suffering from
the very severe limitations noticed in the numerical meth-
ods. In principle, this technique will obviously give the
same exact results of ED. Coming back to our original
problem, the evaluation of the expectation value </1>, it is
possible to use the equation of motion

9 0(0) = [¢(0), 4] (11)
in order to derive one or more equations for this quan-
tity or, better, for the corresponding Green’s function (see
next section). Actually, the equation of motion (1.1) natu-
rally generates higher-order operators (i.e., operators con-
stituted by more and more elementary fields, some of them
centered on farther and farther sites from i). The process
can be iterated by time-differentiating the newly gener-
ated operators and a chain of equations of motion can be
constructed. The obtained system of equations of motion
closes on a complete set of eigenoperators of the Hamilto-
nian

e = 060, B =Y c6iuGn  12)

J

where (i) is a n-component spinorial field and ¢ (i, j),
usually called the energy matrix, is a square matrix of
rank n. This approach is known as the equations of motion
method (EM) and can be applied, obviously giving the
same exact results, in all cases where we can also apply
ED: if the system is non-interacting the original electronic
operators (i) are the eigenoperators of the Hamiltonian;
for small systems the number of equations of motion to
be solved simultaneously, in order to find the complete
set of eigenoperators, is reasonably small and makes the
application feasible. When large interacting systems are
considered the number of eigenoperators rapidly increases
(diverges in the thermodynamic limit) and EM cannot be
effectively applied just as FD could not be. However, the
main difference between the two procedures is that EM
can be still used in some approximation not subject to

the severe limitations noticed in the numerical techniques
derived from ED.

Any approximation derived from EM is based on some
of the peculiar properties of eigenoperators (some of them
are reported below). These properties are obviously not
enjoined by eigenstates that have to be considered always
as a whole (symmetry considerations can only reduce a
brute force diagonalization to a more refined block diago-
nalization which is in any way unfeasible in the thermody-
namic limit). The iterated process of time-differentiation
generates more and more delocalized eigenoperators in di-
rect space (i.e., eigenoperators containing original fields
siting on more and more distant sites), which are less and
less relevant as they have eigenenergies rapidly decreasing
with the spatial size of the eigenoperator (i.e., with the
maximum distance among the sites where the constitut-
ing original fields are sited). Although the total number
of eigenoperators is equivalent to the number of possible
transitions among all the eigenstates and, therefore, goes
as this latter number squared (i.e., if the number of eigen-
states is n, then the number of elgenoperators is "(nﬂ))
to study a specific physical property we need only to an-
alyze the dynamics of the few eigenoperators relevant to
it. Furthermore, the eigenoperators can be easily gener-
alized to any size of the system and the dynamics of all
sites can be studied at once; this is impossible for the
eigenstates. According to this, for very small clusters too,
where the application of ED requires undoubtedly less ef-
fort than that of EM, EM solution is preferable as it has
the fundamental property to be scalable (i.e., it gives a lot
of information about both EM solution of bigger clusters
and the approximate EM solution of the corresponding
bulk system).

The line of thinking described so far follows the de-
velopments of the condensed matter physics in the last
decades. Both ED and EM try to diagonalize the Hamil-
tonian under study, but in two different spaces. The for-
mer searches for the eigenbasis within the Hilbert space
of the system, the latter seeks an operatorial basis within
the field space generated by the application of the Hamil-
tonian to the original field and to its bosonic aggregations
(i.e., to fields constructed by an even number of original
fields). While the states of a system drastically change
with its size (i.e., the corresponding Hilbert spaces do
not overlap), the operators just increase in number and
complexity (i.e., the new field space include the old one).
Moreover, the relevance of an eigenoperator, which is mea-
sured by the magnitude of the scale of energy it describes,
usually survives any change in size of the system. We can
also define as minimal cluster the smallest one allowing
all the terms of the Hamiltonian to act properly. Only
eigenoperators obtained for systems realized on clusters
at least equal to the minimal one can be trusted and used
to describe properties of the corresponding bulk systems.

In order to construct any approximation scheme in the
framework of FM, a convenient generalization of the con-
cept of correlation function is provided by that of Green’s
function [2] (GF). The latter has some advantages in the
construction and solution of the equations that determine



F. Mancini and A. Avella: Equation of motion method for composite field operators 39

it. Moreover, the GF contain most of, practically all, the
relevant information on the properties of the system: ex-
pectation values of observables, excitation spectrum, re-
sponse to external perturbations, and so on. Different
types of GF' can be constructed; we will consider real-time
thermodynamic GF where the thermal averaging process
of the Heisenberg operators is performed over the grand-
canonical ensemble.

The traditional approximation schemes, often based on
perturbative calculations, use as building blocks the non-
interacting GF. The mean-field formulation, which corre-
sponds to the linearization of the equation of motion (1.1)
(ie., iZe(i,t) = 256 (1.J) ¢ (,1), where €(i,]) is now a
scalar function), also belongs to this category. An intense
study has been performed along this line and many tech-
niques have been set up: perturbation expansions on the
basis of Feynman diagrams, Dyson equation, Wick’s theo-
rem, and so on. It is worth noting that in order to describe
phases with different symmetries, these schemes need to
become self-consistent.

All these techniques rely on the hypothesis that the
interactions among the electrons are weak and can be
treated in the framework of some perturbation scheme.
However, as many and many theoretical and experimen-
tal studies have shown with more and more convincing
evidence, all these methods are not adequate to treat
strongly correlated electron systems (SCES) and differ-
ent approaches must be considered. In these systems, the
fundamental concept of the electron as a particle with
some well-defined properties completely breaks down. The
presence of the correlations modifies the properties of the
electrons and, at the macroscopic level, new particles are
observed, with peculiar properties entirely determined by
the dynamics and the boundary conditions (i.e., all the
elements characterizing the physical situation we wish to
study). These new objects appear as the final result of the
modifications imposed on the electrons by the interactions
and contain, by the very beginning, a relevant part of the
effects of correlation.

As simple, but significative, example, let us consider
an atomic model with a local interaction U between the
electrons (i.e., H = ng%pﬂpjgpi). This model is exactly
solvable in terms of the Hubbard operators

E=[1-vlple

n=[¢'¢] .
Due to the presence of the local interaction U, the original
electrons (i) are no more observables and new stable ele-
mentary excitations, described by the field operators £(4)
and 7)(i), appear.

On the basis of this evidence, one can be induced to
move the attention from the original fields to the new fields
generated by the interactions. The operators describing
these excitations can be written in terms of the origi-
nal ones and are known as composite operators. Several
approaches have been formulated where composite fields
are used as operatorial basis for developing approxima-
tion schemes [3-14]. All these approaches are very promis-
ing: some amount of the interaction is already present in

(1.3)

the chosen basis and this permits to overcome the prob-
lem of finding an appropriate expansion parameter. How-
ever, a price must be paid. In general, the composite fields
are neither Fermi nor Bose operators, since they do not
satisfy canonical (anti)commutation relations, and their
properties, because of the inherent definition, must be self-
consistently determined. They can only be recognized as
fermionic or bosonic according to the number of consti-
tuting original particles.

New techniques of calculus have to be used in order to
deal with composite fields. In developing approximation
schemes where the building blocks are now the propaga-
tors of composite operators, one cannot use the standard
version of the consolidated schemes; diagrammatic expan-
sions, Wick’s theorem and many other prescriptions are no
more valid for composite operators. There have been at-
tempts [15-17] to extend these schemes, but although very
good results have been obtained for spin operators [15],
the complexity (and often the ambiguity) of the analyt-
ical calculations required by the Hubbard operators (the
simpler among the fermionic composite operators) does
not allow, at least at the present, an effective application
of such techniques to real problems. The formulation of
the GF method must be revisited. As it will be shown be-
low, three serious problems arise when we wish to study
the propagators of composite fields:

1. the appearance of some unknown parameters as corre-
lation functions of field operators not belonging to the
chosen operatorial basis;

2. the appearance of some zero-frequency constants
(ZFC) as a consequence of the existence of zero-
frequency modes;

3. the necessity of fixing the representation where the GF
are formulated.

In most of the approaches found in the literature the
solution to the previous problems is the following.

1. In order to determine the unknown parameters sev-
eral methods (arbitrary ansatz, decoupling schemes, use
of the equation of motion, ...) have been considered in the
context of different approaches (Hubbard I approximation,
Roth’s method, projection method, spectral density ap-
proach, ...). All these methods suffer from the severe limi-
tation of not being fully self-consistent. On the other hand,
any approach based on the correct use of composite oper-
ators is, by construction, a fully self-consistent approach.
As shown in reference [13], in the context of the Hubbard
model, all these procedures lead to a series of unpleasant
results: several sum rules and the particle-hole symmetry
are violated, there is no presence of a Mott transition, all
local quantities strongly disagree with the results of the
numerical simulation.

2. Any symmetry enjoined by the Hamiltonian induces
a degeneracy among the eigenstates of the system. The
equivalence of two or more eigenenergies implies the pres-
ence of zero-energy modes. In the case of bosonic Green’s
functions these modes give rise to some unknown quan-
tities that we will call ZFC. The ZFC' are really relevant
quantities as they are connected to fundamental physi-
cal properties such as the compressibility and the specific



40 The European Physical Journal B

heat: they can be considered as a measure of the fluctua-
tions, quantum and/or thermal ones, present in the ther-
mal averages of the generators of the symmetry group,
which are usually bosonic. The ZFC are usually fixed by
requiring the ergodicity of the dynamics of the relative op-
erators with respect to the Hamiltonian under study. This
is clearly a very strong assumption. As it will be shown in
the third section of this paper, there are non-trivial exam-
ples of exactly-solvable systems where the ZF'C do not as-
sume their ergodic value: if we would have forced the ZFC'
to assume it, this would have implied a zero compressibil-
ity, specific heat,... Furthermore, although the response
functions do not explicitly depend on them, there is an
implicit dependence due to the inherent self-consistency
of the entire scheme. According to this, in general, these
quantities must be calculated case by case.

3. The knowledge of the Hamiltonian and of the oper-
atorial algebra is not sufficient to completely specify the
GF. The GF refer to a specific representation (i.e., to a
specific choice of the Hilbert space) and this information
must be supplied to the equations of motion that alone
are not sufficient to completely determine the GF. As well
known, the same system can exist in different phases ac-
cording to the external conditions; the existence of infinite
inequivalent representations [18] where the equations of
motions can be realized, allows us to pick up, among the
many possible choices, the right Hilbert space appropriate
to the physical situation under study. The construction of
the Hilbert space where the GF are realized is not an
easy task and is usually ignored. The use of composite
operators leads to an enlargement of the Hilbert space by
the inclusion of some unphysical states. As a consequence
of this, it is difficult to satisfy a priori all the sum rules
and, in general, the symmetry properties enjoined by the
system under study. In addition, since the representation
where the operators are realized has to be dynamically
determined, the method clearly requires a process of self-
consistency.

In the Composite Operator Method [12,13] (COM), as
illustrated in the next Section, the three problems are not
considered separately but they are all connected in one
self-consistent scheme. The main idea is that fixing the
values of the unknown parameters and of the ZFC im-
plies to put some constraints on the representation where
the GF are realized. As the determination of this rep-
resentation is not arbitrary, it is clear that there is no
freedom in fixing these quantities. They must assume val-
ues compatible with the dynamics and with the right rep-
resentation. Which is the right representation? This is
a very hard question to answer. From the algebra it is
possible to derive several relations among the operators
(e.g., vo(1)ps(i) = 0): we will call them Algebra Con-
straint relations (AC'). This set of relations, valid at mi-
croscopic level, must be satisfied also at macroscopic level
(i.e., when the expectations values are considered; e.g.,
(ps(i)ps(i)) = 0). We also note that in general the Hamil-
tonian has some symmetry properties (e.g., rotational in-
variance in coordinate and spin space, phase invariance,
gauge invariance, ...). These symmetries generate a set of

relations among the n-point Green’s functions: the Ward-
Takahashi relations [19] (WT). It is worth noting that
many approximations present in the literature do not ful-
fill these consistency requirements and, consequently, ob-
tain wrong results. Now, certainly the right representation
must be the one where all relations among the operators
satisfy the conservation laws present in the theory when
expectation values are taken (i.e., where all the AC and
WT are preserved). Then, we impose these conditions and
obtain a set of self-consistent equations that will fix the
unknown correlators, the ZFC' and the right representa-
tion at the same time, avoiding the problem of uncon-
trolled and uncontrollable decouplings, which affects many
different approximation schemes and has been here defi-
nitely solved. This is the main ingredient of the COM, to-
gether with the recipes [20] that we have developed in the
last years in order to choose the appropriate operatorial
basis of composite operators according to the specific sys-
tem under analysis. As regards this last issue, we wish to
drive the attention on the procedure we propose as it can
be considered a systematic attempt to seek and build up
(exact as much as it is possible) operatorial basis for inter-
acting systems. This is a new frontier in condensed mat-
ter theory (quantum Hall effect, heavy-fermion systems,
quantum critical points, competing unconventional order-
ing phenomena, breakdown of Fermi liquid picture, con-
nections among spin, charge, orbital and lattice degrees
of freedom, ...) and our procedure should be regarded as
an attempt to revisit the established picture for strongly
correlated systems.

The second section is devoted to revisit the GF' for-
malism in presence of composite fields and to establish the
COM as a general procedure to compute GF of highly cor-
related systems. In the third section of the paper we will
illustrate the formalism by considering some specific
examples: the two-site Hubbard model, the three-site
Heisenberg model, a narrow-band Bloch system in pres-
ence of an external magnetic field and the double-exchange
model. For the two-site Hubbard model we compute the
fermionic GF independently from the bosonic one by
means of the AC. The latter also allow us to fix the ZFC
of the bosonic GF, which result in not being ergodic, and
to get straightforwardly the right representation. The so-
lution of the tree-site Heisenberg model shows the impos-
sibility to get any spontaneously ordered state at finite
temperature in a finite system as a consequence of inter-
nal consistency in the proposed formulation. Moreover, it
is really relevant the existing relation between the num-
ber of ZFC appearing in the GF and the presence of the
magnetic field. In the case of a narrow-band Bloch system
in presence of an external magnetic field we will see that
the ZF(C relative to the total number operator, which is
an integral of motion, has a non-ergodic value, even if we
have an ergodic charge dynamics. The double-exchange
model finally gives us the possibility to show one way to
apply the proposed formulation to large interacting sys-
tems. In this case, we also show how to recognize the man-
ifestation of the Mermin-Wagner theorem [21] within this
formulation. For the exactly-solvable models used in the
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examples (i.e., the Hubbard and the Heisenberg mod-
els), we have checked, although it could not be otherwise,
that the proposed formulation reproduces the exact re-
sults coming from ED. Actually, the COM has been de-
veloped just for systems large and interacting; the appli-
cations to systems that are small or non-interacting have
only to be interpreted as mere demonstrations of all fea-
tures of the method and of its power and correctness. Fi-
nally, in the Appendices, we give: a generalized pertur-
bative approach for strongly interacting systems; part of
the derivation of the general formulation; the derivation
of the zero-temperature formulation; the GF' expressions,
dispersion relations and sum rules where the presence of
the ZFC is explicitly taken into account.

2 General formalism

This section is devoted to revisit the GF formalism in
presence of composite fields and to establish the COM as
a general procedure to compute GF' of complex interacting
systems. Owing to the difficulties in dealing with compos-
ite operators, reported in detail in the previous section,
the study is performed completely within EM. We start
by considering a set of composite fields, chosen according
to a well-defined recipe [20]. The fields can be of fermionic
or bosonic nature, according to the physical properties we
wish to study [22]. In the case of fermionic operators it
is intended that we use the spinorial representation. The
set (i) satisfies a linear system of equations of motion
(see Eq. (1.2)). If the fields (7) are eigenoperators of the
total Hamiltonian, the equations of motion are exact. Sev-
eral examples will be given in Section 3. If the fields (i)
are not eigenoperators of the Hamiltonian, the equations
of motion are approximated and all the formalism is de-
veloped with the aim of computing and using the propa-
gators of these fields as a basis to set up a perturbative
scheme of calculations. In Appendix A, we give a sketch
of a generalized perturbative approach based on a Dyson
equation (Eq. (A.5)) designed for formulations using com-
posite fields. Then, the total weight of the self-energy cor-
rections is bounded by the weight of the residual source
operator 0J (i) (see Eq. (A.2)). According to this, it can be
made smaller and smaller by increasing the components of
the basis ¥(i) (e.g., by including higher-order composite
operators appearing in 8J(7)). The result of such proce-
dure will be the inclusion in the energy matrix of part
of the self-energy as an expansion in terms of coupling
constants multiplied by the weights of the newly included
basis operators. In general, the enlargement of the ba-
sis leads to a new self-energy with a smaller total weight.
However, it is necessary pointing out that this process can
be quite cumbersome and the inclusion of fully momen-
tum and frequency dependent self-energy corrections can
be necessary to effectively take into account low-energy
and virtual processes. According to this, one can choose
a reasonable number of components for the basic set and
then use another approximation method to evaluate the
residual dynamical corrections (e.g., specially adapted ver-
sions of the non-crossing approximation or of the FLEX).

By considering two-time thermodynamic GF

[2,23,24], let us define the causal function

GO (i, 5) = 0(t; — t;) () 1 (5))
—n6(t; — ;) (VT v(@)  (2:1)

the retarded and advanced functions

GG, 3) = #0LE (6 - )] ([06), ()], ) 22)
and the correlation function
C(i, j) = (@) ¢ () - (2.3)

Here n = £1; usually, it is convenient to take n =1 (n =
—1) for a fermionic (bosonic) set 1 (i) (i.e., for a composite
field constituted of an odd (even) number of original fields
©(1)) in order to exploit the canonical anticommutation
relations satisfied by ¢(i); but, in principle, both choices
are possible. Accordingly, we define

24
[A,Bl]=AB—-BA forn=-1 (24)

A B, - {{A, BYy=AB+BA forn=1
(---) denotes the quantum-statistical average over the
grand canonical ensemble. From the equation (1.2) for the
set ¥(i), the Fourier transforms of these functions satisfy
the following equations (we consider a translational invari-
ant system)

w — e(k)] GWp 4 (k,w) = I (k) (2.5)

w — (k)] C(k,w) = 0 (2.5b)
where

10 (k) = F ([06i,0), ¥7G.0)], ) (2.6)

is known as the normalization matrix. F indicates the
Fourier transform. The most general solution of equa-
tions (2.5) is

n en)
G (ko) = > {P ]

=1

(2.7a)

—imd[w — wi(k)] ggf}?,A(k)}

C(k,w) = zn: 8w — wi(k)] ¢V (k) (2.7b)
=1

gg’}gA(k) and ¢ (k) are not fixed by the equations of

motion and have to be determined by imposing the ap-
propriate boundary conditions. w;(k) are the eigenvalues
of the matrix £(k). ¢! (k) are the spectral density func-
tions and can be expressed in terms of the matrices e(k)
and 1) (k) as

ol (k) = 2a1(k) Y 2551 (k) 117 () (2.8)
4



42 The European Physical Journal B

where 2(k) is the n x n matrix whose columns are the
eigenvectors of the matrix (k). The summations run over
the number of eigenvalues of (k) and P represents the
principal value.

J(t<0)=0
and Gg]) (t > 0) =0 it is immediate to see that

By recalling the boundary conditions Gg

l N
g (k) = —g7V (k) = 0 (k). (2.9)

Then, the retarded and advanced GF are completely de-
termined in terms of the matrices (k) and I (k).

The determination of g(n b (k) and ¢\ (k) require some
more work. On the basis of the calculations reported in
Appendix B, it is straightforward to obtain the following
results

> 9" ) = (1= I '(k) (2.10a)
le A(k)

> oMk = (1 4+ n)I(K) (2.10b)
1€ A(k)

27
c® N )
k) = T epmm (k) Ve Blk) - (2.10c)
1 — peBwi(k)

9 ) = (k) vieBk) (2.10d)

1+ ne*ﬁwl(k)a

where A(k) and B(k) are explicitly defined in equa-
tion (B.4) and I'(k), the zero-frequency function, is de-
fined as

1
- — ®
rk) = > ). (2.11)
leA(K)
We see that equation (2.10b) requires that
> oK) =o. (2.12)

1€ A(K)

This condition comes from the requirement that the cor-
relation function in direct space should not diverge: a so-
lution with 32c 4 o=t (k) # 0 implies a divergence
of the Fourier coefficients ¢(!) (k) for any finite tempera-
ture. This is admissible only if the divergence is integrable
and the corresponding direct space correlation function re-
mains finite. A finite value of 37, 440 o(=L0 (k) is gener-
ally related to the presence of long-range order (i.e., sym-
metry breaking) and the previous statement is nothing but
the Mermin-Wagner theorem [21]. A detailed analysis of
this point will be illustrated in Section 3 by investigating
the Heisenberg and Double Exchange Models.

By putting equations (2.9) and (2.10) into equa-
tions (2.7) we get the following general expressions for

the GF
(1)
() o)
Giy(kw) =Y o) 15 (2.13a)
leRN
() _ 1 n
G’ (kw) = I'(k) <w+i(5 * —15>
o l)
DI
—Bw
1€B(k) L+me
1 ne P
X — T+ :
w—wi(k)+id  w—wi(k)—id
(2.13b)
Ck,w) =27m6(w) I'(k)
oD (k)
+2r Y blw—wi(k)] ————
—Bwi(k
leB(k) L+mne 19

(2.13¢)

As shown in Appendix C, equations (2.13) hold also in
the limit of zero temperature (i.e., in the limit 8 — o0).
From these expressions it is possible to get dispersion re-
lations and sum rules that take explicitly into account the
presence of the zero-frequency function (see Appendix D).

We see that the general structure of the GF' is remark-
ably different according to the statistics. For fermionic
composite fields (i.e., when it is natural to choose n = 1)
the zero-frequency function I'(k) contributes to the spec-
tral function, it is directly related to the spectral density
functions by means of equation (2.10b) and its calculation
does not require more information. For bosonic compos-
ite fields (i.e., when it is natural to choose n = —1) the
zero-frequency function does not contribute to the spec-
tral function, but to the imaginary part of the causal GF.
The causal and retarded (advanced) GF contain differ-
ent information and the right procedure of calculation is
controlled by the statistics. In particular, in the case of
bosonic fields (i.e., for n = —1) one must start from the
causal function and then use

R [Gﬁ;i’ (k,w)} —R [G‘C—”(k,w)}
S [GS;Q (k, w)] = + tanh %" ) [G(C_l)(k, w)}

Ok, w) = — {1+tanh %"} {G( Yk ,w)} .

(2.14)

On the contrary, for fermionic fields (i.e., for n = 1) the
right procedure for computing the correlation function
requires first the calculation of the retarded (advanced)
function and then the use of relations identical to those
of equations (2.14), but with the subscript R, A and C
inverted and the minus sign in the last equation changed
to F.

Moreover, it is worth noting that I"(k) is undetermined
within the bosonic sector (i.e., for n = —1) and should
be computed in the fermionic sector (i.e., for n = 1) by
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means of equation (2.10b) or equivalently by means of the
following relation
I — )
(k) = - lim wGg/ (k,w). (2.15)
2 w—0
However, the calculation of oY) (k) requires the calcula-
tion of I (1)(k) that, for bosonic fields, generates unknown
momentum dependent correlation functions whose deter-
mination can be very cumbersome as requires, at least in
principle, the self-consistent solution of the integral equa-
tions connecting them to the corresponding Green’s func-
tions. In practice, also for simple, but anyway compos-
ite, bosonic fields the I'(k) remains undetermined and
other methods rather than equation (2.10b) should be
used. Similar methods, like the use of the relaxation func-
tion [25], would lead to the same problem.
The zero-frequency function I'(k) is known in the lit-
erature [25-31] as an indicator of the ergodic nature of the
dynamics of the operator (i) with respect to the Hamil-

tonian H. We recall that a quantity A has an ergodic
dynamics if and only if

lim (A(t) A) = (A)?

t—oo

(2.16)

that is, if and only if its auto-correlation attenuates in the
time. We have not to forget that the condition (2.16) is
the same as the standard ergodic requirement (i.e., equiv-
alence of averages taken in time and over the phase space)
only for statistical averages computed in the microcanon-
ical ensemble [25]; in other ensembles it holds only in
the thermodynamic limit. By recalling the general expres-
sion (2.13c) for the correlation function, the condition of
ergodic dynamics for (i) is

% > e D pk) = () ($1()) - (2.17)
k

It is worth noting that I'(k) generally does not assume its
ergodic value (i.e., that required by Eq. (2.17)) and has
to be computed case by case according to the dynamics
and the boundary conditions. For instance, for any finite
system the statistical ensembles are not equivalent and
the criterion (2.16) holds only in the microcanonical one.
Moreover, the condition (2.16) is not satisfied by any in-
tegral of motion or, more generally, by any operator that
has a diagonal part with respect to the Hamiltonian un-
der study [27] (i.e., by any operator that has diagonal
entries whenever written in the basis of the eigenstates of
the Hamiltonian under study). This latter consideration
clarifies why the ergodic nature of the dynamics of an op-
erator mainly depends on the Hamiltonian it is subject
to. It is really remarkable that the zero-frequency con-
stants (ZFC'), which are the values of the zero-frequency
function I'(k) over the momenta for which A(k) # 0, are
directly related to relevant measurable quantities such as
the compressibility, the specific heat, the magnetic suscep-
tibility,... For instance, we recall the formula that relates
the compressibility to the total particle number fluctua-
tions

K= (2.18)

% [<N2> - NQ] .

According to this, in the case of infinite systems too the
correct determination of the ZFC cannot be considered
as an irrelevant issue (e.g., Eq. (2.18) holds in the ther-
modynamic limit too). In conclusion, equation (2.17) gen-
erally cannot be used to compute the ZFC. In the next
section, we provide some examples of violation of the con-
dition (2.16). It is necessary pointing out, in order to avoid
any possible confusion to the reader, that we are using
(here and in the examples presented in the next section)
full operators and not fluctuation ones (i.e., we use op-
erators not diminished of their average value, in contrast
with what it is usually done for the bosonic excitations like
spin, charge and pair). According to this, the ZFC can be
different from zero (i.e., be equal to the squared average
of the operator), and still indicate an ergodic dynamics
for the operator.

Summarizing, by means of EM and by using the
boundary conditions relative to the original definitions
of the various GF we have been able to derive explicit
expressions for these latter (see Egs. (2.13)). However,
these expressions can only determine the functional de-
pendence of the GF': their knowledge is not fully achieved
yet. According to the (anti)commutation relations, the
normalization matrix I( (k) usually contains some un-
known functions that have to be self-consistently calcu-
lated together with the ZFC' (and the energy matrix e(k)
if we use some approximation scheme). These functions
are static correlation functions (correlators since now on)
of operators not belonging to the chosen basis. In princi-
ple, one could introduce a new set of composite fields and
repeat all scheme of calculations in order to calculate the
unknown correlators. However, the new set will possibly
generate other unknown correlators and the entire pro-
cess of self-consistency might become very cumbersome
and, in most of the cases, not convergent. An alternative
scheme of calculation can be proposed. Fixing the values
of the unknown parameters and of the ZFC implies to
put some constraints on the representation where the GF
are realized. As the determination of this representation
is not arbitrary, it is clear that there is no freedom in fix-
ing these quantities. They must assume values compatible
with the dynamics and with the right representation. Now,
certainly the right representation must be the one where
all relations among the operators are systematically con-
served when the expectation values are taken (i.e., where
all the AC and WT are satisfied). It is then clear that a
shortcut in the procedure of self-consistency can be intro-
duced. We can fix the representation by requiring that

($(6) (@) = % 3 % /dwC (k, o)

where the Lh.s. is fixed by the AC, the WT and the
boundary conditions compatible with the phase under
investigation and in the r.h.s. the correlation function
C (k,w) is computed by means of equation (2.13¢c). Equa-
tions (2.19) generate a set of self-consistent equations
which determine the unknown parameters (i.e., ZFC' and
unknown correlators) and, consequently, the proper repre-
sentation [12,13,32]. It is worth noticing that the number

(2.19)
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of constraints generated by equation (2.19) can be differ-
ent from the number of unknowns parameters. Generally,
the coincidence of these two numbers signals that the cho-
sen basic set gives a reasonable description of the dynam-
ics contained in the truncated EM. Condition (2.19) can
be considered as a generalization, to the case of composite
fields, of the equation that, in the non-interacting case,
fixes the way of counting the particles per site, accord-
ing to the algebra, by determining the chemical potential.
According to this, the unknown correlators, coming from
the non-canonical (anti)commutation relations, have not
be seen like obstacles as many analytical techniques do,
but like a possibility to fix the representation and sat-
isfy all the symmetry relations. Any approximation not
using them to do so will surely fail in reproducing the
physics of the system under study. It is worth noting, and
the examples of the next section will show how, that by
means of equation (2.19) is often possible to close one sec-
tor (i.e., fermionic, spin, charge, pair, ...) at a time without
resorting to the opening of all or many of them simulta-
neously. Obviously, this occurrence enormously facilitates
the calculations. Finally, it is worth noting that the entire
process of self-consistency (i.e., the use of Eq. (2.19)) will
affect all the GF at the same time and, therefore, all the
physical properties of the system. For instance, the linear
response of the system to an external perturbation (sus-
ceptibility, conductivity, ...) is described by two-time re-
tarded GF [25]. Although these type of GF do not explic-
itly depend on the ZFC, there is an implicit dependence
through the internal self-consistent parameters, that is the
unknown correlators.

In this section, we have presented the general frame-
work of the COM, which results to be a general method
to deal with composite fields and, consequently, with com-
plex correlated systems. In the next section, we will illus-
trate this calculation scheme by considering some specific
examples.

3 Examples

3.1 The two-site Hubbard model

The two-site Hubbard model is described by the following

Hamiltonian
+ U Z ’IlT Tll

HZ”

where the summation range only over two sites at dis-
tance a from each other and the rest of notation is stan-
dard [33]. The hopping matrix ¢;; is defined by

1 .
Q5 = 5261’“(’_]) ak
k

where a(k) = cos(ka) and k =0, 7/a.
We now proceed to study the system by means of the
equation of motion approach and the GF formalism [33]

dij ) c (3.1)

tij = -2t Q5 (32)

described in Section 2. A complete set of fermionic eigen-
operators of H is the following one

9

N /1

Y(i) = & (1) (3.3)

s ()

where
£6) = [1 - n(i)] (i) (3.4a)
n(1) = n(i) c(i) (3.4b)
£0) = 50" mu() € ) + €D (n)  (3do)
1(0) = 50" ()07 (0) + €D (). (3.40)

We define ¢ (i)

tation for the field operators. n, (i) = cf(i) o, c(i) is the
charge (u = 0) and spin (u = 1,2, 3) operator; greek (e.g.,
u, v) and latin (e.g., a, b, k) indices take integer values
from 0 to 3 and from 1 to 3, respectively; sum over re-
peated indices, if not explicitly otherwise stated, is un-
derstood; o, = (1,0) and o = (—1,5); & are the Pauli
matrices. In momentum space the field (i) satisfies the
equation of motion

= > ;@i;j¥(j) and use the spinorial no-

.0
1E¢(kz, t) =e(k) Y(k,t). (3.5)
where the energy matrix (k) has the expression
—u—2ta(k) =2t a(k) —2t —2t
(k) = 0 U—pn 2t 2t
&)= 0 At —p+2talk) 4t a(k)
0 2t 2ta(k) U—p
(3.6)

Straightforward calculations, according to the scheme
traced in Section 2, show that two correlators

A= (@ E@) - (1 ()0 ()
_ ey , toy ]
p=1 (@) n.(0) = (@) es(i) [ ) e} )] ) (38)

appear in the normalization matrix I(k) =
f<{w(i,t), z/ﬁ(',t)}>. Then, the GF depend on three
parameters: u, A and p. The correlator A can be ex-
pressed in terms of the fermionic correlation function
C(i,j) = <1/)(i)1/)T(j)>; the chemical potential p can be
related to the particle density by means of the relation
n = 2[1 — C11(4,4) — Caa(i,7)]. The parameter p cannot
be calculated in the fermionic sector; it is expressed in
terms of correlation functions of the bosonic fields n,,(7)
and ¢1(2) ¢; (7). According to this, the determination of the
fermionic GF requires the parallel study of bosonic GF.
After quite cumbersome calculations, it is possible to
see [33] that a complete set of bosonic eigenoperators of

(3.7)

H in the spin-charge channel is given by
B (i)
BW (4) = (3.9)

B{" (i)



F. Mancini and A. Avella: Equation of motion method for composite field operators 45

where
B (i) = ¢ (i) o, (i) (3.10)
Bé“) (i) = c'(i) o, (i) — (i) 7 (i) (3.11)
B (i) = dyu(i) — (i) + di, (i) — die (i) (3.12)
B (i) = dyu(i) — (i) — di, (i) + die(0) (3.13)
BYO (i) = fuli) = S2(0) = FL@) + fl06@) (3.14)
B (i) = fu(i) — FG) + £1(0) — F1(0) (3.15)
with the definitions:
dy, (1) = éT( )oun®(i) (3.16)
fol@) = =n'(i) n(i) — d' (i) d* (i)
0t (i) n(i) €7 (i) € (3) (3.17)
fuli) = € QD 10 — Sicarem(D)ne(). (315)
The field B (i) satisfies the equation of motion
9 b — Iz
1§B< )(k,t) = r(k) BW (k,t) (3.19)
where the energy matrix (k) has the expression
0 —2t0 000
—4t[l—a(k)) 0 U0 0O
W=l 0 ouooau| G0
0 0 8000
0 0 0800
The energy spectra are given by
w1(k) = =2t/2[1 — a(k)] (3.21)
wa(k) = 2t\/2[1 — a(k)] (3.22)
ws(k) =-U —4Jy (3.23)
wye(k) = —4Jy (3.24)
ws(k) = 4Jy (3.25)
we(k) =U+4Jy (3.26)
where
Ju = é [\/UQ + 6412 — U} . (3.27)

Straightforward calculations according to the scheme
given in Section 2 show that the correlation function has
the expression

CW (i, 5) < -)>
1
4

226: ik(i—j)—iwn(k)(t;—t;)
k

n=1

X {1 + tanh 6”#()] Frm (k) (3.28)

where
fm0) =0  for n=3,4,56

f(n,u)(ﬂ)

(3.29a)

ﬁwn( ) (n,u)( ) Vn. (3.29b)

Owing to the fact that zero-energy modes appear for
n =1, 2and k =0 (c¢f Eq. (3.21)), ZFC appear in the
correlation functions

(3.30)

12
=5 Z f(n,u)(o)
n=1

In principle I"*)(0) could be calculated by means of equa-
tion (2.10b); however this would require the calculation of
the anticommutators ({ B (i, t), BWT(j,¢)}) which gen-
erate correlation functions of higher order giving raise to
a chain of GF whose closure is not evident. Similar meth-
ods, like the use of the relaxation function [25], would lead
to the same problem. One might think, as is often done
in the literature, to fix this constant by its ergodic value.
However, this is not correct as we are in a finite system
in the grandcanonical ensemble and the ergodicity condi-
tion (2.17) does not hold. For the moment, we can state
that this constant remains undetermined.

The spectral density functions a(”’“)(kz), calculated by
means of equation (2.8) depends on a set of parameters
which come from the calculation of the normalization ma-
trix 10 (k) = .7:<[B(“) (i, 1), B(“)T(j,t)]>. In particular,
for the (1,1)-component the following parameters appear:

Cry = <na(i)ff(i)> (3.31a)
C* = (c"(i) ' (i) (3.31b)

= < cr(3) ¢y (4) {CI (1) c¥(z)}a> (3.31¢c)
x5 = (i) - 7*(4)) (3.31d)

The parameters C* and Cf; are related to the fermionic
correlation function C(i,j) = (¥(i)¥1(j)). The parame-
ter x& can be expressed in terms of the bosonic correla-
tion function CW(i,5) = (BW (i) BW1i(j)). In order to
use the standard procedure of self-consistency, we need
to calculate the parameter d. For this purpose we should
open both the pair channel and a double occupancy-
charge channel (i.e., we will need the static correlation
function (nq () ny (i ) n®(4))). The corresponding calcula-
tions are reported in reference [33] where is shown that
these two channels do not carry any new unknown ZFC.
The self-consistence scheme closes; by considering the
four channels (i.e., fermionic, spin-charge, pair and dou-
ble occupancy-charge) we can set up a system of coupled
self-consistent equations for all the parameters. However,
the ZFC' I'™)(0) has not been determined yet: we have
not definitely fixed the representation of the GF.

In conclusion, the standard procedure of self-
consistency is very involved and is not able to give a final
answer because of the problem of fixing the ZFC. This
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Fig. 1. bo and by, are plotted as functions of n for U = 4 and
T =0and 1. U and T are expressed in units of t.

problem is known in the literature as the zero-frequency
ambiguity of the GF formalism [24,26,28-30].

We will now approach the problem by taking a differ-
ent point of view. The proper representation of the GF
must satisfy the condition that all the microscopic laws,
expressed as relations among operators must hold also at
macroscopic level as relations among matrix elements. For
instance, let us consider the fermionic channel. We have
seen that there exists the parameter p, not explicitly re-
lated to the fermionic propagator, that can be determined
by opening other channels. However, we know that at the
end of the calculations, if the representation is the right
one, the parameter p must take a value such that the sym-
metries are conserved. By imposing the AC (2.19) and by
recalling the expression for A we get three equations

n = 2(1 — 011 — 022) (3.32&)
A=CY —C% (3.32b)
Cia = 0. (3.32¢)

This set of coupled self-consistent equations will allow
us to completely determine the fermionic GF. Calculations
show [33] that this way of fixing the representation is the
right one: all the symmetry relations are satisfied and all
the results exactly agree with those obtained by means of
ED. We do not have to open the bosonic channels; the
fermionic one is self-contained.

Next, let us consider the spin-charge GF. In the spin-
charge sector we have the parameters C*, C7, x&, d and
the two ZF(C'

(3.33)

Zf(l O)
T4
Zf(z k)

Since we are in absence of an external applied magnetic
field, by, takes the same values for any value of k.

The parameter C* and Cfy are known, since the
fermionic correlation functions have been computed. The

k=1,2,3. (3.34)
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Fig. 2. bo and by are plotted as functions of U for T" = 0.01
and n = 0.6, 0.8, and 0.9. U and T are expressed in units of ¢.

parameters xo and d can be computed by means of the
equations

d= i (ng (i) nu(i)) —p (3.35)
Xg = (7i(i) - 1% (2)) - (3.36)

The ZFC' are fixed by the AC
O (,1) = (nu (i) mu (@) - (3.37)

By recalling (3.28) and (3.29) we have

by = (nu(i) (i —iZ[l—i—cth 2( )} o) ()

= (3.38)
with
CNCENGIEE S M WNCED

D = (n;(i)n(i)) is the double occupancy and can be cal-

culated by means of the fermionic correlation functions
D =n—1+C;. equations (3.35) and (3.38) constitute a
set of coupled self-consistent equations which will deter-
mine completely the Green’s function in the spin-charge
channel. Calculations show that this way of fixing the rep-
resentation is the right one: all the symmetry relations are
satisfied and all the results exactly agree with those ob-
tained by means of ED.

The ZFC by and by, are plotted as functions of n and U
in Figures 1 and 2, respectively, for various temperatures.
It is worth noting that they assume their ergodic values
(i.e. n? and 0, respectively) only in some regions of the
parameter space: (at zero temperature) at n = 1 (both
by and b) and at n = 0.5 (bg only). In these regions, the
grand-canonical ensemble is equivalent to the microcanon-
ical one and the underlying ergodicity of the charge and
spin dynamics emerges.

It is worth noting that the ZFC' by is directly related to
the compressibility by means of the following relation [33]

(3.40)
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According to this, if we erroneously set the value of by
to the ergodic one (i.e., n?) we would get a constant zero
compressibility.

3.2 The three-site Heisenberg model

The three-site Heisenberg model, in presence of an exter-
nal magnetic field h, is described by the following Hamil-
tonian

(3.41)

where S () is the local spin at the site i, with quantum
number S = % The relative positions of the three sites are
those of the end-points and the middle-point of a segment,
in this case we are using periodic boundary conditions, or
those of the vertices of an equilateral triangle; in both
cases, the distances of two of them in the given order (i.e.,
1—2,2—3,3—1)is taken to be unitary. The notation

5% (i) indicates

t) = ayS(.t) (3.42)
J
The projection operator oyj is defined by
1 ik(i—j
oy =3 > eli-Da(k) (3.43)
k
a(k) = cos(k) (3.44)
where k = %Z, 0, i—g
A complete set of eigenoperators of H is
NG
M (i) = | pim™ (i (3.45)
R0
where
my, o ST(i)=58,+1iS, form=1
Yy (i) = { S.(i) for m = 2 (3.46)
m), o UT(E) =1, +il, form=1
Py (1) = { L. (i) for m, — 9 (3.47)
+(7) — —
(m),~ _ ] ut(@)=uy+iu, form=1
g (1) = { uy (1) for m = 2. (3.48)

Hereafter, we will use the two sets of indices {z,y, 2z} and
{1, 2,3} interchangeably.
The composite fields [ (i) and ug(z) are defined as

(1) = iexpq Sy (1):94(7)
k(1) = iekpq (L (1) Sq (7) + S5 ()14 (4)].

The field (™) (i) satisfies the equation of motion

(3.49)
(3.50)

wm() emy(m)(4) (3.51)

where the energy matrix (™) has the expression

amh 2J 0
e = 0 aph 2J (3.52)
0 2J amh

with a,, = 1 — d2,,. The energy spectra are given by

(m)

wy = amh (3.53)
w1

wi™ = 5 (2amh —37) (3.54)
w1

wi™ = 5 (2amh +37). (3.55)

By means of the equation of motion (3.51), the corre-
lation function

Cm (i, ) = (W™ @™ () )
_i b ik(i—j) i (ti—t;) (y(m)
Szl;%/dwe D-iwlti—t) om) (K, w)  (3.56)

has the expression

3
) (k,w) = Z — WM (k)] ™) (k)

(3.57)

™) (k) have to be calculated.

Straightforward calculations according to the scheme
given in Section 2 show that the correlation function is
given by

where the matrices ¢(™

3
CW(i,j) = éz 3 ki) il () tity)

n=1 k

(1)
x [1 + coth <5%>]a<”vl>(k) (3.58)

]_ . . . . (2) . .
@ (i i) = b ik (i) —iw @ (k) (ti—t;)
C¥(i,j) =0 (IJ)+6§ Eke !

n=2

ﬁw@)
x [1 + coth T" o™ (k) (3.59)
where the zero-frequency function

Z elk(l—J) (1, 2) )

b (i, ) (3.60)

appears owing to the presence of the zero-energy mode
( ) _ .
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The spectral density functions o(™™) (k), calculated by  depends on the set of parameters

means of equation (2.8), have the following expressions

(1m) (k) = A(lm)(k)A(l) (3.61)
o™ (k) = A\2™) (k) A?) (3.62)
o) (k) = AG™) (k) A®) (3.63)
. 16
AW = I (k) - 150 ) (3.64)
AC™) (k) = 3157 (k) — 415" (k) (3.65)
AG™ (k) = 3157 (k) + 415" (k) (3.66)
with
100
AD =1000 (3.67)
000
2 1 1
g6 8
AP = ) (3.68)
1 9
8 32 128
21 1
1es
A® = 63 (3.69)
13 9
8 32 128

The normalization matrix 1™ (k) = F ([(™(i,t),
1™ (j,1)]), that has the form

1w 1w 15K
10 = [ 1900 1200 2100 | @70
1900 $13 09 1-18) ()
0 Pk 0
@@= 1200 o 2P| e
0 1—61f§)(k) 0
with
Iy (k) = 2M 3.72)
13 (k) = = [1 = a(k)] (¢ +20()7) (3.73)
I (k) = -1 — a(k)] Cf}° (3.74)
109 = [t~ afi)] (1 - 70" + 5027 - 204 )
(3.75)

(5:(0)) = O = 3 = (S*()s~() — 5 (3.76)
Y™ = (ST(1)5™ (i) (3.77)
O = (S2(1)S- (1)) (3.78)
Cly) = — (I ()1 () (3.79)

These parameters are expressed in terms of the cor-
relation function C'(™) (7,7) and self-consistent equations
are easily written by means of equations (3.58) and (3.59).
However, in order to close the set of equations we need to
know the zero-frequency constant

o 1 11
b = 5 D albl (k) = -3 > ke (k).
k Kk

(3.80)

This quantity, undetermined within the bosonic sector,

can be obtained, as proposed in Section 2, by fixing the

representation of the GF by means of equation (2.19). In
particular, the AC requires that

a : L atarnam s

(8™ () ()>:—M+<S (8)8(i)) + 5 (ST (@S (1))
(3.81)

This equation, together with the others coming from

the definitions (3.58) and (3.59), gives a set of five coupled
self-consistent equation for the five parameters M, Cﬁ)a,
CS)Q, 02(;), b(2) The system can be analytically solved.
In particular, the magnetization per site M and the zero-

frequency constant bﬁ) are given by

B2J
M= ltanh <@> 2+ 33(:osh(ﬂh) +ef2 (3.82)
2 e”27 + cosh(Bh)
h(Bh) — 4 — P37
p(e _ 9cosh(Bh) ¢ (3.83)

36 [eﬁ%‘] + cosh(ﬂh)] '

It should be noted that other ZFC appear into the
model. Again, they can be fixed by the Algebra Con-
straint. For example, the ZFC

b2 = Z 2 (k) = 21 ; Z 3 (k) (3.84)
is determined by means of the equation
(5.(0)S-() = | (3.85)
and takes the value
(D = cosh(Bh) 4+ St (3.86)

36 [eﬁ%‘] + cosh(Bh)

We note that the two ZFC b(2)a and b(11 assume the
ergodic value M? only in the hmlt of very large external
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Fig. 3. The zero-frequency constants bﬁ)a and bﬁ) are plotted
as a function of the magnetic field for T'/J = 0.1. For compar-
ison, the ergodic value M? is also given.

magnetic field h. In Figures 3 and 4 the zero-frequency
constants b(121)a and bﬁ) are plotted as a function of the
magnetic field h/J and temperature T'/.J, respectively. For
comparison the ergodic value M? is also reported.

Let us now consider the S*-channel (i.e., m = 1) and
the relative ZFC. For h # %J there are no zero-energy
modes and the ZFC relative to the ST-operators assume
the ergodic value, i.e., zero. For the special case h = %J

a zero-energy mode wél) = 0 appears and the ZFC be-
come nonergodic. Again, the Algebra Constraint can be
used to fix these quantities. Straightforward calculations,
according to the proposed scheme, give

1
by =3 D bi (k) =
k

11 2,1
273 iV (k)
3e037 44

3
18e-387 (14 ¢73)

1
DY = 5 D aloby () = -2 D alk)ei (k)
k k

3937 41
_ .
9e—387 (1 + eB%J)

Let us now consider the limit of zero temperature.
From the previous expressions it is easy to derive the fol-
lowing.

e Case J > 0 (antiferromagnetic exchange)

for h > §J
2 (3.87)

=N =

3
for h < =
or h < 2J

0.16 — 71—

-———-—_ _ _

014 | -
02| ]
010 |-
0.08 — 1 7]
006 | U N
004 | ]

002 [

0.00

-0.02

-0.04 I L 1 L 1 L 1 L 1 L 1
0.0 0.5 1.0 1.5 2.0

Fig. 4. The zero-frequency constant bﬁ)a and bﬁ) are plotted
as a function of the temperature for h/J = 1. For comparison,
the ergodic value M? is also given.

The two ZFC b(121)a and bﬁ) take the values

2 2)a
b2 e

3
T = for h > §J (3.88)

] =

5

2 2 3
b = _5p{De = 55 forh<ZJ (3.89)

They are ergodic for A > %J and nonergodic for A <

3J . The other two ZFC bgll)a and bgll) take the ergodic
value (0) for any h > 0. In the limit of h — 0 we obtain
the ferromagnetic solution.

e Case J < 0 (ferromagnetic exchange)

M= (3.90)

1
5

All the zero-frequency constants take the ergodic
value. In the limit of h — 0 we obtain again the ferro-
magnetic solution.

Let us now consider the case of absence of external
magnetic field (h = 0). For this situation there are two
energy modes, one in the S,-channel (i.e., m = 2) wig) =0
and one in the S*-channel (i.e., m = 1) w%l) = 0. In order
to avoid divergencies in the correlation functions, it must
be ¢(1™) (k) = 0 for m = 1, 2 and for all values of k. It
must be

Mk =0=M=0
(k) =0=1- O + 201D — 805 = 0.

(3.91)
(3.92)

By solving the self-consistent equations and by means
of the Algebra Constraint, one finds the following noner-
godic values for the ZFC"

2) 1. 5
b§1) = §b§1) = a3

2 (3.93)

2 1 1 5— eﬁ%"
b(n)a = 55(11)(1 = 3 : (3.94)
36 (eﬁﬁ" n 1)
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At zero temperature

b = gl = o (3.95)
1

b = %bﬁ’“ —{ .36 P00 )

36 forJ < 0.
Summarizing, we have
[T [» 7 [ [s5[5]

0 —0 >0[1 |N|E
0 -0 <0|+ |E |E
—01{0 #0[0 |N [N
0 #0 <03 |E |E
0 <3J |>0|% |N |E
0 >3] |>0|1 |E |E
#0 {0 #0[0 |N [N
#0 | —-o00 |#0|3% |E |E
#0 | #0,3J | #0 | #0 | N |E
#0 | 3J 40| #0| N | N

where E and N stays for an ergodic and nonergodic be-
havior of the corresponding ZFC, respectively. The first
two lines of the table consider the cases in which we have
a ferromagnetic solution.

The operator S, = >;5;(i), as any constant of mo-
tion, has essentially a non ergodic dynamics. Actually, for
high values of h/J, S, is forced to assume the higher pos-
sible value % and no fluctuations are allowed (i.e., the sus-
ceptibility vanishes): the dynamics returns to be ergodic.
At zero temperature and for the ferromagnetic case (i.e.,
J < 0) the system is polarized and S, is ergodic for all
finite value of the magnetic field and in the ferromagnetic
phase. The operator ST = . ST (i) has an ergodic dy-
namics only in presence of the magnetic field A or in the
ferromagnetic phase as it is no longer an integral of mo-
tion in these cases. Also, for the special case h = %J the
operator ST becomes nonergodic. These results show how
the ergodicity of the dynamics of an operator can strongly
depend on the boundary conditions.

It is worth noticing that the ferromagnetic phase has
been obtained only at exactly zero temperature (i.e., when
the applied magnetic field has been sent to zero after set-
ting the temperature to zero). This is due to the size
of the system; finite systems can sustain ordered phases
only at exactly zero temperature. The correlation func-
tions in direct space should be computed by finite sums
over momenta (see Eq. (3.56)) and for vanishing spectra
(e.g., for vanishing applied magnetic field; see Eq. (3.53))
the Bose factor (see the coth in Eq. (3.58)) diverges ex-
cept at exactly zero temperature. Only in this latter case
(i.e., T = 0) the corresponding spectral density function
can retain a finite value (and consequently the magne-
tization too; see Eqgs. (3.61, 3.64) and (3.72)) instead of
being forced to vanish in order to avoid divergences in

the direct space correlation functions. In practice, we al-
low the magnetization to be finite and search for a fully
self-consistent solution. The system will self-adjust by se-
lecting only those states with a finite magnetization of
the same sign of that assigned as initial condition accord-
ing to the ergodicity breaking inherent to any symmetry
breaking.

We wish to remark that all the results obtained in this
section exactly agree with those obtained by means of ED.

3.3 A narrow-band Bloch system in presence
of an external magnetic field

A narrow-band Bloch system in presence of an external
magnetic field is described by the following Hamiltonian

H= Z (ti5 — p835) ' (i) e(j) — thg(z‘) (3.97)

where n3(4) is the third component of the spin density op-
erator and h is the intensity of the external magnetic field.
The indices i and j run on an infinite d-dimensional lattice.
Straightforward calculations show that the causal Green’s

function G(C”) (2,7) = (7 [nu(i)nu(4)]) and the correlation
function CW (4, 5) = (n,(i)n,(4)) of the charge-spin op-
erator n, (i) = cf(i) o, c(i) have the following expressions
G (k,w) = —i (27) a6 (k) 6 (w) TW
— QW (k,w)
W (k,w) = (2m)4 1 a4 6D (k) §(w) T+

ﬁ—w} Sy [QW)( k, w)} (3.99)

(3.98)

1 + tanh
+[+an 5

where §(¥)(k) is the d-dimensional Dirac delta function.
QW (k,w) comes from the proper fermionic loop and is
the Fourier transform of

QW (i,j) = Trlo, Ge(iy j) o Ge(4,9)] -

Here G (i, j) = (T [c(i) ¢t (j)]) is the causal fermionic
function and has the expression

(3.100)

2 &

GC(kvw) = Z 1+ o B En (k)

n=1
1 e B En(k)
W En(K) 0w Eak) 10

X

] (3.101)

with
Ei(k)=—p—2dtak) —h (3.102)
Ey(k)=—p—2dtak)+h (3.103)
10 00
oM = (0 0> o® = <0 1) (3.104)
where
1
a(k) = p ;cos(ki a). (3.105)
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The ZFC I'* is fixed by the AC (2.19) which requires

(1) myu(4))
- ﬁ /ddk dw [1 + tanh %‘”} 3R k,w)] -
(3.106)

W —

The loop Q™ (k,w) can be calculated by means
of (3.101). Calculations show

o’ /ddk dw [1 + tanh %"] 3[Q™W (k, w)]

(2m)#+t
=(n) = (n))* = (n))*>  for p=0,3 (3.107)
=(n) =2 (n(i)) (n (1)) for p=1,2.  (3.108)

By recalling the AC (3.39), equation (3.106) gives for
the ZFC

' = (p)? (3.109)
r42 =y (3.110)
I'® = (ng)? (3.111)

in accordance with the ergodic nature of the spin and
charge dynamics in this system.

It is worth noting that the compressibility of this
system can be computed by means of the general for-
mula (2.18) that holds in the thermodynamic limit too
and gives

1 B at
K= —5=
22

2 1
e 2 e

where C,, (k) = cosh’ (ﬁET(k)

godic charge dynamics can lead to a non-ergodic value of
the ZFC relative to the total number operator, which is
an integral of motion. Also in the infinite systems the de-
coupling inspired by the requirement of ergodicity cannot
always be applied.

(3.112)

). We can see that an er-

3.4 The double exchange model

The Double Exchange Model is defined by the following
Hamiltonian [34]

H = Z(tij — 1 035)
ij

5(7) is the spin density operator of the electron and is given
by §(i) = 3ct(i) & c(i); S(i) is a localized spin; Jy is the
ferromagnetic Hund coupling (Jg > 0). In the nearest-
neighbor approximation for a d-dimensional cubic lattice
with lattice constant a, ¢;; takes the form

o (i) e(j) = Ju Y _ 5(i) - S(i) (3.113)

i

ti; = —2dtaij = _thﬁ E etk (=) Oé(k)
k

(3.114)

where a(k) has been defined in the previous section and d
is the dimensionality of the system. Let us introduce the

Heisenberg field
50)= (5:)

where s¥ (i) and S* (i) are the standard rising and lower-
ing spin operators.
This field satisfy the equation of motion

(3.115)

(i) = 1%3(2’) (2de”§())+ Ta A )) (3.116)
where

pli) = [ (i) ¢ (4) — c] (i) ¢ (i) (3.117)

A@) = sT (1) S.(i) — s.(i) ST(5). (3.118)

We linearize the equation of motion (3.116) by projecting
the source J(7) on the basis (3.115)

Jz)%ZEB(i,j)B
J

(3.119)

where the coefficients are determined by the following
equation

([JG,t), BI(j,t

ZE 11 ) (atﬂ>

(3.120)
Let us compute, within the framework described in
Section 2, the causal Green’s function

=F(T[BW)B'(j)]) =

iP{wu% >1Mw ()] 9 (k)
" (3.121)

Gk,w)

and the correlation function

Z w — wp (k)] ™ (k)

(3.122)
g™ (k) and (™ (k) are still unknown functions; wy (k) are
the eigenvalues of the matrix ¢ (k); o™ (k) are the den-
sity spectral functions, completely determined by the ma-
trices e (k) and 15 (k) = F ([B(i,t), B'(j, t)]) by means
of relation (2.8). We have

(3.123)

For the sake of brevity, the explicit expressions for the
energy matrix 2 (k), the energy spectra wy,(k) and the
spectral density functions (™) (k) are not reported here
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and can be found in reference [35]. The calculations show
that

llli%wg(k) =0 (3.124)
IBI1Z 1 -1

lim 0@ (k) = 122 . 3.125

Jim ot (k) B+ 1B\ 11 ( )

According to the scheme of calculation given in Sec-
tion 2, we generally have

"M (k) =27 6,2 0(k) TP + [1 + coth W”T(k)} o™ (k)
(3.126)

Bw

g™ (k) = 26,2 6(k) I'B + coth %JW (k). (3.127)

The Green’s functions have the following expressions

Gk,w) =
2 (n 1 e Pw
g —Bw{ _wn(k)méw—wn(k)—ié}

C(k,w) =2m6(w)6(k) I'?

2
+7 Z § [w — wn (k)] {1 + coth 6%0{)] o™ (k).

—2id(w)d(k) I'B

The ZFC I'B is determined by means of the AC which
requires

= (B(i) B (3))

ad & w,
W ;/ddk |:1 + CothﬂT(k) U(”)(k), (3.128)

In the case of a three-dimensional system the integral
in equation (3.128) is finite. The Green’s functions are
fully determined and a ferromagnetic order does exist. In
the case d < 3 we must distinguish two cases.

T > 0: In this case the divergence of the integrand
in equation (3.128) is not integrable and the integral
is divergent. The only physical solution is absence of
ferromagnetic order. The magnetization must vanish

IB =2(s.(i)) =0 (3.129)
1B =2(S.(i)) = 0. (3.130)
The spectral density function ¢ (k) vanishes, in

agreement with the general relation (2.12).
T = 0: In this case equation (3.128) becomes

gn )(k)

(3.131)

where 6[- - -] is the ordinary step function. We see that we
can have ferromagnetic order for any dimension.

The results of the calculations for this model illus-
trate what stated in Section 2 regarding broken symmetry
states in bulk systems. When a zero-energy mode appears
in the ladder operator sector (e.g., ST) the correspond-
ing spectral density function, which is related to the or-
der parameter (e.g., 0 « I « (S%)), must vanish for all
finite systems at finite temperatures and for all infinite
systems when the divergence of the Fourier coefficients
of the correlation function is not integrable in order to
avoid divergences in the direct space correlation functions.
At zero temperature it is always possible to have a finite
value for the spectral density function and consequently
for the order parameter. This result is a manifestation of
the Mermin-Wagner theorem [21] which prevents the sys-
tem from approaching, in some dimension, a particular
ordered phase except at zero temperature.

4 Conclusions

In conclusion, the GF formalism for composite operators
has been revised by making use of the equations of motion
method. It has been shown that all the general relations
(spectral representation, sum rules, etc.) can be derived
without resorting to the knowledge of the complete set
of eigenstates of the Hamiltonian. The advantage of us-
ing the equations of motion formalism is that it can be
applied to any operatorial basis both exact and approx-
imate. Special attention has been paid to the presence
of the ZFC and to the problem of determining unknown
parameters related to higher order correlators. The ZFC
issue is quite relevant because such quantities are directly
related to many response functions. We have shown that
an effective and proper way to fix the representation is
to impose the constraints coming from the AC and the
WT. When these conditions are required, a set of self-
consistent equations is obtained that permits to compute
both the parameters appearing in the spectral functions
and the zero-frequency component of the GF, avoiding the
problem of uncontrolled and uncontrollable decouplings,
which affects many different approximation schemes and
has been here definitely solved.

Moreover, it is worth reminding the following issues,
which have been discussed in detail all over the text:

e The two-time retarded (advanced) and causal bosonic
GF carry substantially different information.

e The ergodicity condition cannot be used a priori to
compute the ZFC.

e The Mermin-Wagner theorem [21] naturally appears as
a requirement to avoid divergences in the direct space
correlation functions.

It is also necessary pointing out — we already did it
in Section 2 — that, although a careful choice of the com-
ponents for the basic set makes possible the description
of the main scales of energy present in the system under
analysis, the inclusion of fully momentum and frequency
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dependent self-energy corrections can be sometime neces-
sary to take into account low-energy and virtual processes.

The calculation scheme has been illustrated by consid-
ering four systems: the two-site Hubbard model, the three
site Heisenberg system, the narrow-band Bloch system
and the Double-Exchange model. These examples clearly
show the relevance and complexness of the above issues
and illustrate in detail the application of the proposed
procedure. It has been checked that the proposed scheme
gives the exact result when solvable systems are consid-
ered.

We would like to thank Prof. N.M. Plakida for many enlighten-
ing discussions and for helping us in placing the ergodicity issue
in its proper historical context. We also wish to thank Prof. H.
Matsumoto, Prof. A.E. Ruckenstein and Prof. V. Srinivasan
for their very useful comments and remarks on the manuscript
and the stimulating discussions.

Appendix A: Generalized perturbative
approach for SCES

Given a certain Hamiltonian H = H [¢(i)], where (i) de-
notes an Heisenberg electronic field [i = (i, ¢)] in spinorial
notation satisfying canonical anticommutation relations,
and a set of composite operators (i) chosen in the spirit
of the discussion given in Section 1, the equations of mo-
tion for the propagator of the field (i) can be obtained
by the dynamics obeyed by this latter which reads as

0

S 00) = [w(), H) = J(0). (A.1)

In complete generality, this equation can be rewrit-
ten as

(i) = el it + 870

J

(A.2)

where the linear term € v represents the projection of the
source J(i) on the basis 1(¢). The energy matrix (i, j)
can be computed by means of the equation

([876,0),47(G,0)],,) =0 (A.3)

which defines the residual source 4J(7) and gives

c6.5) =3 (60,0 an0] ) ([wa.n,v'G.0],)
: (A.4)

Obviously, also less systematic projections of the
source could be attempted and will result in different de-
terminations of (i, j) and 8J (7).

After equation (A.2), the Fourier transform Gg’) (k,w)

of the GF Gg’)(i,j), where @ = R (retarded), A (ad-
vanced), C' (causal) (see definitions in Sect. 2), satisfies

the following equation

GE (k,w) = Gy (k,w)

. Gg,)o(kw) {](n) (k)} - 287) (k,w)Gg’) (k,w) (A.5)

where the propagator Gg’)o(k,w) is defined by the equa-
tion

[w — e(k)] GY (k,w) = I (k). (A.6)

The matrix 1 (k), known as the normalization ma-
trix, is defined as

100k) = F([66,0,07G.0],) (A7)

Zg’) (k,w) is the proper self-energy and has the expression

25 (k,w) = BY, (k,w)I™ (k) ! (A.8)

Q,irr

where Bé;)m_ (k,w) is the irreducible part of the propaga-
tor Bg’) (k,w) = F(Q [8J(i)6JT(j)] ). Equation (A.5) can
be formally solved to give

1
w—e(k) - B (k,w)

G (k,w) = IMk).  (A9)

Equations (A.5) and (A.9) are nothing else than the Dyson
equation for a formulation based on composite fields and
represents the starting point for a perturbative calculation

in terms of the propagator Gg,)o (k,w). The properties and
the determination of this latter are derived and discussed
in Section 2.

Appendix B: KMS relation and the general
formulation

From the definitions (2.1-2.3) we can derive the following
exact relations

G (i, 5) + G (i) = 26 (0, 5)
(@, v’ ()]_,) B
GG, 5) - GP 5 = ([0, 61 ()], ). (B.b)
By making use of the Kubo-Martin-Schwinger (KMS)
relation (A(t) B(t')) = (B(t') A(t +103)), where A(t) and

B(t) are Heisenberg operators at time ¢, the n-commutator
can be expressed in terms of the correlation function as

(66, 1 0),) = 57 3 5 [dwet 09t
k

x [1+ne ] C(kw) (B.2)
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where M is the number of sites and k runs over the first
Brillouin zone. Then, the equations (B.1) in momentum
space become

-5 [1+7ne?v] c<l>(k)} =0. (B.3b)

In order to solve these equations, we have to take into
account that for any given momentum k we can always
write

0 forle Alk) CR={1,...
wik) = {#0 for | € B(k) = X (B4)

( ( ) =10
= N). Combined use of equations (B.3) d (B.4)
(2.1

2. 0)).

Obviously, A(k) can also be the empty set (i.e
and B(k)
gives the results reported in Section 2 (Eq.

Appendix C: Formulation in the limit of zero
temperature

At zero temperature equation (B.3) is not applicable and
we should proceed in the following way (the usual deriva-
tion in terms of a complete set of eigenstates of the Hamil-
tonian can be found in Ref. [36]).

Let us consider the correlation functions

Cyyi (is7) = (L@OY (7))
=y X gy eI o)
k
Cyiy(i,j) = < @)y ()
1 ifk-(i—j)—w(ti—t;)

By taking the limit 7" — 0 of the KMS relation
Cyiy(k,w) = e 70y (k,w) (C.1)

it is immediate to see that for any finite value of the
Fourier coefficients, it must be

#0 forw>0

Cyyi (k,w) = { 0 forw<0 (C2)
=0 forw>0

Cd,w(k,w) = {7& 0 for w S 0. (Cg)

Furthermore

Cyiy(k, 0) = Cyyi (k, 0). (C4)

Let us consider the energy spectra w;(k) and let us
write in complete generality, for any given momentum k

=0forl e A(k) CRN
>0forleCk)CN
<0forl € D(k) C X.

wi(k) = (C.5)

Then, equations (B.1) in momentum space are writ-
ten as

W 3 {2200 - 5- @ =l 00}
o200 - 50,0}

+ Z 0w — wi(k
leC(k)
, n
+ Y Sl —w®)] {g )+ 5el), 10} =0
1eD(k)
(C.6a)

n

> ol — wi(k)] {om”(k) - % (1+m) EZLNk)}

(C.6b)

The solution of these equations gives the following ex-
pressions for the GF

D)
G(n) (kw) = Z #k()k)iﬁ (C.7a)
=
6 llews) = 19 <wi15 T 1715)
+ (, l) 0w (k)] . 0]—wi (k)] |
o [
C.7b

Cyyt (k,w) =27 6(w) I'(k)
+27 Z lw — wi(K)] Olwy (k)] oD (k) (C.7c)

I¢.A(k)
Cyiy(k,w) =2m6(w) I'(k)
+2mn Y Slw — wi(k)] O[—wi (k)] e (k). (C.7d)
¢ A(k)

It is fairly easy to check that these expressions (C.7) cor-
respond to limit 7" — 0 (8 — oo) of the expressions (2.13).
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Appendix D: Useful relations

We note the dispersion relations
R |Gk w)| =
1 1
F-P {/dw'—/%
T w—w
R |G (k,w)| =
1 11 —Bu!
——Pp / o’ R/
T w—w'l—neBw

This latter relation is valid for causal fermionic GF (i.e.,
for n = 1) only when I'(k) = 0.

For the retarded and advanced GF, which are ana-
lytical functions satisfying the standard Kramers-Kronig
relations (D.1a), we can establish a spectral representation

[G;Q}A(k, w')} } (D.1a)

[Gg” (k, w')} } .

(D.1b)

M (k.o
o _ [ g 2 W) D.2
Gralk,w) / w w—w +ié (D-2)
where we introduced the spectral function
n
P (k) = 3 8l — (k)] 0 ()
1=1
1
= ;E%[G%(k, w)} . (D.3)

A spectral representation for the causal GF' can be estab-
lished in the following form

Gg’) (k,w) =

/dw' P (k, ') L e
l+ne Py \w—w+id w—w —id |’

(D.4)

This latter relation is valid for causal bosonic GF (i.e., for
n = —1) only when I'(k) = 0.
We also note the sum rule

/ dw p" (i ZUW) — k).  (D.5)
This is a particular case of the general sum rule
/dwwp ) (i Zw &) (k)
= MW) (k) =€l I (D.6)
where M (7P)(k) are the spectral moments
MO0 = 7 [i155 (1000, 003, (0.7)

ti=t;

and the last equality in equation (D.6) holds only when
equation (1.2) also does.

Finally, by exploiting the independence of ¢(!) (k) on 7
(see Eq. (2.10c)), we have

k

o= (k) = tanh 5%()0@’” (k) VIeBk). (D.S)
In absence of symmetry breaking, equations (2.12)
and (D.8), together with equation (2.8), give

1500 = 3 2,00k taat 21
: (D.9)

The independence of C(k,w) on 7 (see Eq. (2.14)) gives

tanh

251 (k) IS5 (k).

S} [va> (k,w)} s [GS;’?) (k,w)} . (D.10)

In terms of spectral densities

ASSONE"
> lw - wi(k)] [1 +e_3(wl)(k> ;

leA(k)

J(71,1) (k) o
1 — e~ Buwi(k) o

(D.11)
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